

UNIVERSITY OF MORATUWA

Faculty of Engineering Department of Electronic & Telecommunication Engineering B.Sc. Engineering Level 4 – Semester 2 Examination EN 4070 – ROBOTICS

Time Allowed: 2 hours

September 2010

INSTRUCTIONS TO CANDIDATES

- 1. This paper contains FOUR (04) questions on TWO (04) pages.
- 2. This examination accounts for 80% of the module assessment. The marks assigned for each question and sections are included in square brackets.
- 3. This is an **OPEN** book examination. You are allowed to use **ONLY/ANY** written **AND/OR** printed material
- 4. Time allowed is 2 hours
- 5. Answer ALL questions

Question 1

 $\{A\}$ and $\{B_0\}$ are two coincident frames as shown Figure Q1. Frame $\{B_0\}$ undergoes two rotations and a translation as shown.

Figure. Q1: Frame rotation and translation

a)	Calculate the rotation matrix ${}^{A}_{B}R$	[5]
b)	Calculate the translation matrix ${}^{A}_{B}D$	[5]
c)	Calculate the homogeneous transformation matrix ${}^{A}_{B}T$	[5]
d)	Calculate ${}^{B}_{A}T$ without taking the inverse of ${}^{A}_{B}T$	[5]
e)	Determine ${}^{B}P$	[5]

Question 2

A three link RRP manipulator is shown in Figure Q2

Figure. Q2: Three link RRR manipulator

a) Derive the three expressions $x = \mathbf{f}_x(\mathbf{\theta})$, $y = \mathbf{f}_y(\mathbf{\theta})$, $z = \mathbf{f}_z(\mathbf{\theta})$ of the forward kinematics $\mathbf{x} = \mathbf{f}(\mathbf{\theta})$ of the manipulator, where $\mathbf{x} = (x, y, z)^T$ is the Cartesian position and $\mathbf{\theta} = (\theta_1, \theta_2, \theta_3)^T$ is the joint configuration [10]

[5]

- b) Derive the Jacobian matrix $\mathbf{J}(\mathbf{\theta})$ of $\dot{\mathbf{x}} = J(\mathbf{\theta})\dot{\mathbf{\theta}}$.
- c) Figure out which joints most significantly contribute to the end-effector speed in \hat{X}, \hat{Y} , and \hat{Z} directions, when the manipulator is in $\boldsymbol{\theta} = (30^{\circ}, 45^{\circ}, -60^{\circ})^{T}$ configuration. [5]
- d) In the above configuration, determine the end-effector speed and the direction of motion if joints are actuated with $\dot{\theta} = (0.1, -0.3, 0.4)^T$ rad/s. [5]

Question 3

An Un-manned Aerial Vehicle (UAV) is to be fitted with an inertial measurement system to estimate the orientation of the vehicle. The inertial measurement system consists of a 3-axis accelerometer and a 3-axis gyroscope. An extract from the datasheet of the gyroscope sensors is given in Table Q1.

Symbol	Parameter	Test condition	Min.	Typ. ⁽²⁾	Max.	Unit
FSA	Moseuromont rango	4x OUT (amplified)		±300		°/s
FS	weasurement range	OUT (not amplified)		±1200		°/s
SoA	Sonoitivity(3)	4x OUT (amplified)		3.33		mV/°/s
So	Sensitivity	OUT (not amplified)		0.83		mV/°/s
SoDr	Sensitivity change vs temperature	Delta from 25°C		0.03		%/°C
Voff	Zero-rate level ⁽³⁾			1.23		v
Vref	Reference voltage			1.23		V
OffDr	Zero-rate level change Vs temperature	Delta from 25°C		0.05		°/s/°C
NL	Non linearity	Best fit straight line		±1		% FS
BW	Bandwidth ⁽⁴⁾			140		Hz
Rn	Rate noise density			0.035		°/s/√Hz
Тор	Operating temperature range		-40		+85	°C

Table Q1: Gyroscope data

a) Use Z-Y-Z Euler angle representation for the UAV attitude. Show how you could obtain the angle set velocities (Z-Y-Z Euler rates) starting from gyroscope measurements. Assume an ideal gyroscope sensor [7]

(Note: Z-Y-Z Euler angle representation is defined as three rotations about moving axes in the following order: α around Z axis, β around Y axis, and γ around Z axis)

- b) Refering to Table Q3, describe why the gyroscope sensors alone cannot provide an accurate estimate of the UAV attitude. [6]
- c) Show how the accelerometer onboard the UAV can be used to measure the vehicle attitude. Clearly state any assumptions that you make. [6]
- d) After conducting an experiment to determine the errors in both the gyroscope-based and the accelerometer-based attitude estimations, the followings were realized.

- (i) While the accelerometer based estimation is accurate in long term, it is not fast enough to reflect quick changes in actual UAV attitude
- (ii) Gyroscopes have faster responses than accelerometers but the attitude estimation based on gyroscopes has a slowly varying error.

Using the above results, describe a <u>simple</u> method to fuse the two estimations together, in order to obtain a better estimate of the UAV attitude. [6]

Question 4

Stanford Scheinman Arm along with its kinematic model are shown in Figure Q4.

Figure Q4: Stanford Scheinman arm and its kinematic model

- a) Describe the kinematic design of the robot arm emphasizing how it has been designed to allow convenient position and orientation control. (you may readily use kinematic equations o verify your answer)
- b) Write down the expressions for the following:
 - (i) Position of frame $\{2\}$ with respect to frame $\{0\}$
 - (ii) Orientation of frame {4} with respect to frame {0}
 - (iii) Position of z-axis of frame {5} with respect to frame {0} [7]
- c) Using forward kinematics and differential kinematics of the robot arm end-effector position \mathbf{x}_{p} , sketch an inverse Jacobian feedback control loop to make the end-effector follow a

reference trajectory \mathbf{X}_{ref}

d) One of the joints of the robot arm with regard to the above feedback control loop has joint dynamics given by $\frac{12}{s^3 + 5s^2 + 2s}$. Calculate the required forward gain in order to increase the control bandwidth to 10 rad/s. [6]

[6]